
TimeUnion: An Efficient Architecture with Unified Data Model
for Timeseries Management Systems on Hybrid Cloud Storage

Zhiqi Wang
The Chinese University of Hong Kong

zqwang@cse.cuhk.edu.hk

Zili Shao
The Chinese University of Hong Kong

shao@cse.cuhk.edu.hk

ABSTRACT
Timeseries management systems have attracted considerable atten-
tion during the last decade with the rise of IoT and performance
monitoring.With the rapidly increasing data scale in the production
environment, deploying timeseries management systems on cloud
with cloud storage is a natural trend because of its high availability,
reliability, and scalability. However, the state-of-the-art designs are
not tailored for cloud environments; they suffer from the limited
number of timeseries a single compute node can handle because of
the imbalanced resource usage.

In this paper, we present TimeUnion, an efficient timeseries
management system tailored for hybrid cloud storage services (e.g.
fast cloud block stores and slow cloud object stores). First, we
propose our unified data model to represent both independent
timeseries and groups of timeseries, which is capable of handling
diverse use cases of timeseries. Second, since the main bottleneck
of the current timeseries systems is the overuse of memory, we
introduce our exploration on memory-efficient data structures for
timeseries tomaximize the number of timeseries a compute instance
can maintain. Third, to absorb the memory data chunks quickly, we
present our time-partitioned LSM-tree with tailored architecture,
compaction mechanism, out-of-order data handling, and dynamic
level size adjustment for timeseries data. We prototype TimeUnion
with C++ from scratch and evaluate it on AWS EC2 with AWS
EBS (cloud block store) and AWS S3 (cloud object store). Compared
to the storage engine of Cortex, TimeUnion can handle at least
5× more timeseries, and achieve at least 24.8% higher insertion
throughput and 49.8% lower query latency. We have released the
open-source code of TimeUnion for public access.

CCS CONCEPTS
• Information systems → Data management systems.

KEYWORDS
timeseries systems, cloud storage

ACM Reference Format:
Zhiqi Wang and Zili Shao. 2022. TimeUnion: An Efficient Architecture with
Unified Data Model for Timeseries Management Systems on Hybrid Cloud
Storage. In Proceedings of the 2022 International Conference on Management

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3526175

of Data (SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3514221.3526175

1 INTRODUCTION
Timeseries management systems including performance monitor-
ing systems and timeseries databases play a critical role in IoT and
performance monitoring[7, 13, 23, 29, 49, 54, 58, 60]. As data scale
increases, deploying the system on cloud becomes a promising op-
tion. However, since the state-of-the-art timeseries management
systems are mostly targeted at the local machines with locally
attached storage, performance degrades when directly deploying
them on cloud, especially with hybrid cloud storage with different
performance/cost trade-offs.

When deploying systems on cloud, computation and storage are
commonly separated. Computation is handled by cloud computing
services with attached memory (e.g. virtual machines like AWS
Elastic Cloud [3], serverless functions like AWS Lambda [5]). For
storage, mainstream cloud storage suppliers mainly provide block
storage (e.g. AWS Elastic Block Store (EBS) [4], Google Persistent
Disk [15], and Azure Disk Storage [43]) and object storage (e.g.
AWS Simple Storage Service (S3) [6], Google Cloud Storage [16],
and Azure Blob Storage [42]). Block storage is orders of magnitude
faster than object storage, while it is at least 4× more expensive.
As a result, users commonly leverage hybrid cloud storage (i.e.
combining block and object storage) to strike for a better cost
efficiency especially when there is a large volume of hot and cold
data in data-intensive applications.

The design of the state-of-the-art open-sourced timeseries man-
agement systems such as Prometheus and InfluxDB borrows the
philosophy of log-structured merge-tree to pursue a high insertion
throughput. Data is partitioned based on time and is first batched in
memory before being flushed to disks to form a new partition. Be-
sides, each partition is self-contained with inverted index and data
samples. Within the design, there are several assumptions. First,
it mainly handles medium data scale (e.g. less than one million
timeseries with several days of data). Second, the memory volume
is large enough to handle all inverted indexes, metadata, and data
samples of the most recent time partition. Third, it assumes that
only one type of persistent storage is utilized without considering
leveraging tiered storage. Finally, it assumes that timeseries are
handled and stored independently. There are several critical issues
when deploying the existing systems on cloud to manage a large
number of timeseries as follows.

Unbalanced resource utilization. In the design of the existing
timeseries management system, an inverted index is built on the fly
for each tag pair of each timeseries in the memory partition. In our
observation, such an index occupies a large volume of memory, es-
pecially with high-cardinality timeseries data (i.e. millions of unique

Session 20: Database Security and Distributed Data Management SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1418

https://doi.org/10.1145/3514221.3526175
https://doi.org/10.1145/3514221.3526175

tag pairs of all timeseries). Besides, for on-disk partitions, metadata
(e.g. tag pairs and symbols) is commonly loaded into memory for
accelerating querying, which incurs non-negligible memory usage.
In addition, to strike for a high compression ratio, data samples
of each timeseries are first cached and compressed with relatively
large in-memory chunks (e.g. 120 samples in Prometheus). Thus,
the memory usage can be explosively increased with the number of
timeseries managed by the system, and the system can easily hang
with exhausted memory.

Unexplored multi-tiered cloud storage. The deployment of
timeseries management systems on multi-tiered storage and hybrid
cloud storage is not explored. New challenges emerge with the
cost/performance gap when bringing hybrid cloud storage. First, we
need to swiftly handle hot/cold data separation and migration in the
system write path without blocking data insertion. Second, given
the limited fast storage, a new mechanism needs to be designed to
dynamically adjust the data size in fast storage. Third, with most
cold data maintained in the slow storage, optimizations on the
system query path are critical (e.g. caching mechanism and caching
granularity). Thus, a new design for timeseries management system
to fully exploit different cloud storage tiers is urgently needed.

Limited group support. Timeseries group is naturally formed
in numerous real-world use cases (e.g. metrics from the same virtual
machine, docker container, IoT sensor, etc.). However, the exist-
ing systems such as Prometheus and InfluxDB physically manage
and store each timeseries independently. At the data model level,
InfluxDB supports simple grouping that timeseries share a set of
tag pairs and have their own fields/measurements. However, this
scheme can not cover the case that timeseries in a group also have
their own unique tags, which is a common case in performance
monitoring.

To address the above-mentioned issues, we present TimeUnion,
an efficient timeseries management system with a unified data
model and hybrid cloud storage support. The contributions are
summarized as follows:
• Cloud storage characteristics.We conduct a series of experi-
ments to explore the characteristics of cloud storage. Combining
with the characteristics of timeseries, we generalize key princi-
ples to design a timeseries management system on cloud.

• Unified data model. In the high-level data model, we propose
our group model abstraction compatible with the existing tag-
based identifier, with a natural transition from a single timeseries
to a group.

• Memory efficient data structures. To address the issue of high
memory usage in the existing systems, we redesign memory-
efficient data structures for inverted index and data samples, and
we extend the memory mapping support for them.

• Elastic time-partitioned LSM-tree. To avoid batching an ex-
cessive number of data chunks, we design a time-partitioned
LSM-tree to absorb those finished data chunks with high inser-
tion throughput. Since timeseries data are naturally ordered by
timestamps, we partition the time range of each level and ap-
ply different compaction mechanisms for different storage tiers.
Specifically, the hot/cold data separation can be naturally done
with our three-level design (i.e. recent data in levels 0 and 1 with
fast storage; cold data in level 2 with slow storage). Since the
majority of data are ordered with high data locality after the com-
pactions in the first two levels, we only maintain one level (i.e.
level 2) on slow storage, thus significantly reducing unnecessary
compactions and data traffic to slow storage. With this design,
out-of-order data and data retention can be efficiently handled
based on corresponding time partitions. Besides, considering the
high cost of fast storage, the fast storage usage of the tree can
automatically adapt to a predefined threshold by dynamically
adjusting the partition length in different levels.

2 BACKGROUND AND MOTIVATION
2.1 Cloud Storage Exploration
To facilitate the design of TimeUnion, we conduct a series of ex-
periments on AWS EBS and AWS S3 (widely used cloud block and
object storage) to explore the characteristics of cloud storage.

First, we show the pricing of different AWS storage per GB per
month in region ap-northeast-1 (Tokyo) in Figure 1a. For the typical
cloud storage, the price of AWS EBS (block storage) is around 4×
more expensive than that of AWS S3 (object storage). Besides, we
have a simple estimation for the memory prices based on the price
difference among t3 instances with different memory volumes of
ElastiCache and EC2, and we can see they are at least two orders
of magnitude more expensive than EBS, which matches the price
difference between mainstream RAM and SSD available on the
market.

Second, we investigate the read and write performance of block
storage and object storage, respectively. We launch an m5.2xlarge
EC2 instance on region Tokyo with 200GB EBS volume attached.
We set up the S3 bucket in both Tokyo and Virginia regions. As
shown in Figure 1b, for small writes, EBS is at least three orders of

(a) Price (USD/GB/month) (b) Write performance (c) Read performance

Figure 1: Cloud storage comparison.

Session 20: Database Security and Distributed Data Management SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1419

Figure 2: Timeseries management system architecture.

magnitude faster than S3. Although the gap gradually decreases
as the write size increases because of the high network bandwidth
of S3, EBS is still 3× faster than S3 for 32MB write. As shown in
Figure 1c, EBS is 30× faster than S3 on average. Besides, the first
read is 1.8× and 71% slower than the following reads for EBS and
S3. In addition, for both EBS and S3, the read latency is stable when
the read size is smaller than 16KB; this can be leveraged as the unit
for efficient reading.

2.2 Timeseries Management System
In this section, we discuss the data model of timeseries and the
design of the state-of-the-art timeseries management systems.

Data model. A timeseries consists of two components, namely
identifier and data samples. An identifier is a set of tag pairs, which
are handled differently in the data models of various timeseries
management systems. For Prometheus [49], a performance mon-
itoring system, the identifier is composed of a metric name and
a set of tags, and there is no support for timeseries grouping. For
InfluxDB [29], a timeseries database, they utilize a measurement
name to possibly describe a group of timeseries. For a group of
timeseries, they share a set of tag pairs, and they are differentiated
only by the field name, which is not sufficient for real-world use
cases. For instance, to differentiate different timeseries in the CPU
resource monitoring group, we need extra tag pairs such as CPU
core ID and CPU mode (e.g. idle, user, kernel, etc.) [48].

For each data sample, it contains a timestamp (i.e. 64-bit integer)
and metric value (i.e. 64-bit floating-point number). To strike for
a high compression ratio, a relatively large number of data sam-
ples (e.g. 120 samples in Prometheus) of the same timeseries are
compressed into chunks based on the compression algorithms pro-
posed in Facebook Gorilla [46] (i.e. delta-delta for timestamps and
XOR’d for metric values). Both Prometheus and InfluxDB store data
samples of timeseries independently, even though InfluxDB has a
logical group view. Heracles [61] proposes a group storage model
for performance monitoring timeseries to strike a balance between
compression and query performance. However, for the high-level
data model, it is still based on Prometheus without modifications
on tags management.

System architecture. Timeseries management systems need to
guarantee high insertion throughput for a large number of time-
series with frequent data sample generation. As a result, as shown
in Figure 2, current systems batch writes and build indexes on the
fly for incoming timeseries in memory. After a specific period (e.g.
2 hours in Prometheus), all the memory data are flushed to disks to
form a self-contained partition with a persistent index correspond-
ing to a specific time range. Besides, for the on-disk blocks, they

will be merged into larger blocks when the number of them reaches
a specific threshold.

However, such architecture exposes several issues. First, it suffers
from high memory pressure because data samples and indexes from
all timeseries need to be first batched in memory. The memory
usage can explosively increase with the number of timeseries and
the data sample density. Second, data flushing can severely affect
the system’s performance. During data flushing, the system needs
to flush and clean all the related in-memory data structures, which
incurs severe contention with the incoming insertion and queries at
that time. Third, it is awkward to handle out-of-order data samples
(e.g. Prometheus does not even support this). The out-of-order data
samples can affect the decision of the timing to flush the in-memory
data, and we need an extra mechanism to batch and flush those
out-of-order data samples. For instance, we need to maintain an
extra space in memory for those out-of-order timeseries, and during
data flushing, we need to create extra data chunk files and indexes
under the existing blocks.

Cloud-based timeseries management system. Even though
many companies provide services for managing timeseries data
on cloud, their implementations are mostly closed-sourced. For
the open-source cloud-based timeseries management systems,
Thanos [47] and Cortex [23] are two popular ones in recent years.
Thanos launches federated Prometheus with sidecar data uploading
components, and data chunks from Prometheus are pushed to the
cloud storage (e.g. S3, GCS, Azure). Compared to Thanos, Cortex is
more flexible; it allows users to insert their custom timeseries via
the Prometheus remote write API [9]. However, they still utilize
the storage engine of Prometheus to handle the timeseries data by
simply wrapping the file operations with cloud storage APIs, such
that the disk files generated by the storage engine are uploaded
to cloud storage. Thus, they suffer from the same limitations as
mentioned in the previous section.

2.3 Log-Structured Merge-Tree
Log-structured merge-tree [45] is renowned for its decent inser-
tion performance with acceptable query performance degradation.
Since the born of LevelDB and RocksDB [51, 55], there are extensive
research works on the read/write/space amplification and the de-
ployment on different storage devices of LSM-Tree-based key-value
stores [10–12, 14, 17–21, 30, 31, 36–41, 50–52, 55, 56, 63–68, 71, 72].

Data insertions are first handled by the in-memory data structure
-MemTable, which sorts the key-value pairs in lexicographical order
(i.e. skip list in LevelDB and RocksDB). When the MemTable is full
(i.e. 64MB), it is treated as an Immutable MemTable and a new
MemTable is created to handle the new data insertion. Then, the
Immutable MemTable is flushed to a disk file (SSTable) in level 0,
which contains a set of data blocks indexed by the index block,
and a filter block with a bloom filter to accelerate queries. When a
level accumulates too many SSTables, or the overall size of SSTables
exceeds a specific threshold, it will trigger a level-based compaction,
which selects an SSTable in that level as the victim, and at the same
time searches for all SSTables in the next level that overlaps with
the victim SSTable. Then, they will be merged, and new SSTables
will be generated at the next level.

Session 20: Database Security and Distributed Data Management SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1420

(a) Memory/Disk usage (b) Memory usage breakdown

Figure 3: Resource usage of Prometheus tsdb.

2.4 Motivation
To motivate the design of TimeUnion, we conduct a series of ex-
periments on the state-of-the-art timeseries management systems,
and a simple combination of timeseries management system and
LSM-Tree.

Challenge 1: High memory pressure. In this experiment, we
load different numbers of timeseries (each with 20 tags) into the
storage engine of Prometheus (i.e. Prometheus tsdb). As shown in
Figure 3a, when there is only index and without any data samples,
the memory usage linearly increases with the number of timeseries.
Then, for each timeseries, we insert 2 hours of random data samples,
with data intervals as 10 and 60 seconds, respectively. The overall
memory usages of 10 and 60 seconds sample intervals are 51% and
31% higher than that of the case when there is no data sample. The
memory usage can be further increased when increasing the time
span of data samples to 12 hours because Prometheus needs to load
the metadata of the flushed partitions.

Then, we break down the memory usage of the case with 12-
hour data samples and 60-second data interval. We observe that
the inverted index, block metadata, and data samples account for
51%, 34%, 15% of memory usage, respectively. The main reason for
the high memory usage of the inverted index and block metadata
is that they are maintained by nested hash tables, which require
much extra space to reduce the collision rate.

Therefore, exploiting more memory-efficient data structures to
handle the inverted index and block metadata is urgently needed.
Besides, we also need to reduce the size of cached data samples by
moving the compressed chunks to persistent storage once they are
finished.

Challenge 2: Efficient tuple flushing. To avoid batching all
the compressed data chunks for a relatively long time, a natural ap-
proach is to flush those close chunks to an external high-throughput
data structure, such as LSM-Tree. Thus, we conduct experiments to

(a) (b)

Figure 4: Prometheus tsdb with LevelDB as storage.

Figure 5: A tags grouping example.

investigate the capability of utilizing the LSM-Tree as the storage
data structure for the timeseries management system. We integrate
a Golang version LevelDB implementation [59] into Prometheus
tsdb. For each compressed chunk, we generate a ULID [44] as the
key, and insert the key-value pair into LevelDB. We insert different
numbers of timeseries, each with 5 tags and 12 hours data sam-
ples with 60 seconds as the data interval, and we compare this
integration with the original Prometheus tsdb.

As shown in the top graph of Figure 4a, the insertion through-
put of the integration prototype is only 1.6% lower than that of
Prometheus tsdb. As shown in the bottom graph of Figure 4a, Lev-
elDB spends 18% more time to finish all the compactions compared
to Prometheus tsdb; this can potentially affect the system’s perfor-
mance because compaction can be expensive when bringing slow
cloud storage. As shown in the top graph of Figure 4b, LevelDB only
writes 2.4% more data to disk compared to Prometheus tsdb. As
shown in Figure 4b, on average, we need to read 36% more SSTables
in a compaction. Besides, we observe that for each compaction, at
least one overlapping SSTable needs to be read from the next level.

In conclusion, LSM-Tree is capable of handling a large volume
of timeseries data. However, considering the deployment on hybrid
cloud storage, the original compaction mechanism needs to be
redesigned to reduce inefficient data reading during compaction.
Besides, a new mechanism is needed for LSM-Tree to handle the
out-of-order timeseries data.

Challenge 3: Grouping. Figure 5 shows an example of time-
series from two devices under the same region. Without grouping,
the lengths of postings lists of "region=1" and "device=1" are both
2000. If we gather all timeseries into a group with shared group
tags as "region=1" and group ID as 1, the lengths of posting lists of
"region=1" and "device=1" both become 1 because they both indi-
cate group 1. Besides, with grouping, we only need to store the tag
"region=1" once for a whole group. However, there are two chal-
lenges. First, we need another level of indexing to locate a specific
timeseries inside a group. Second, when connecting the group data
model with physical data storage, we need to consider (1) the data
samples of the new and missing timeseries in the current tuple; (2)
the out-of-order data samples.

3 DESIGN
3.1 Unified Data Model
In this section, we first present the logical view of our unified data
model represented by tags. Then, we introduce the physical view of
the data model, and discuss cases of expanding group and handling
missing/out-of-order timeseries data.

Logical view. In our unified data model, timeseries can be rep-
resented as an individual or one timeseries belonging to a specific

Session 20: Database Security and Distributed Data Management SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1421

Figure 6: Timeseries and timeseries group.

group. The timeseries identifier is represented by a set of tags, and
they can be converted into the group representation as shown in
Figure 6. We need to specify the shared group tags for all the time-
series in the group. When adding new timeseries into the group, the
group tags are extracted, while the other tags are used to uniquely
identify the timeseries inside the group. For each group, we assign a
unique ID for it, and the group ID is utilized as the postings ID when
building the inverted index for all the tags of the group timeseries.

Physical view. As shown in Figure 7, we manage individual
timeseries and groups separately. For a group, we deduplicate the
redundant timestamps by sharing the same timestamp column;
while the metric values of each timeseries are stored independently.
For the data insertion to a group, there are four cases as follows:
(1) Normal insertion:We append the timestamp to the timestamp

column, and metric values to the columns of all timeseries in
the group separately.

(2) Insertion with new timeseries: First, we extract the unique
tags from the new timeseries and insert them into the time-
series tags array of the group. Second, we create a new metric
value column for it, and fill the previous values in this column
with NULL values, where we extend the XOR’d algorithm in
Gorilla [46] with an extra control bit to support NULL value.
Finally, a normal insertion is performed.

(3) Insertion with missing timeseries: For those timeseries
missing in this round, we fill them with NULL values, as shown
in TS3 in Figure 7.

(4) Out-of-order insertion:We search for the corresponding slot
according to the timestamp, and we determine whether to re-
place the existing values or to insert new ones. Besides, it may
trigger an early flush of the current chunk if the insertion times-
tamp is older than the current time partition, which will be
discussed in §3.3.
When the current chunk is full (i.e. filled with 32 samples),

we concatenate and serialize timestamp chunk and metric values

Figure 7: Data flow in the model.

Table 1: Grouping analysis notations.

N Number of timeseries
T Average number of tags per timeseries
Sp Average size (number of bytes) per posting list entry
St Average size (number of bytes) per tag
Sg Average number of timeseries in a group
Tg Average number of group tags per group
Tu Average number of unique tags per group
CostEBS Latency of reading 1 byte (1/bandwidth) in EBS
CostS3 Latency of 1 Get request (1 data block) to S3
P Number of time partitions covered in a query
Sdata Raw data size per timeseries per time partition
Sblock Data block size in SSTables (4KB by default)
L Number of located timeseries in a query
G Number of located groups in a query
R1 Compression ratio of individual timeseries model
R2 Compression ratio of grouping model

chunks into a byte array, generate key-value pair, and insert it into
the time-partitioned LSM-Tree.

Grouping analysis. Next, we analyze the cost of grouping in
terms of index space and querying latency, and provide guidelines
for users to effectively utilize grouping. The notations are shown
in Table 1.

First, we measure the index space cost with the total size of all
posting list entries and all tags. The cost without grouping is as
follows:

𝐶𝑜𝑠𝑡𝑠1 = 𝑁 ·𝑇 · (𝑆𝑝 + 𝑆𝑡) (1)
In Equation 1, 𝑁 ·𝑇 · 𝑆𝑝 is needed as for each tag in each timeseries,
a posting list entry is required for mapping the tag to the timeseries
ID (as the inverted index), while for each timeseries, we need to
store all of its tags as well (so the total tag size from all timeseries
is 𝑁 ·𝑇 · 𝑆𝑡). With grouping, the cost is shown as follows:

𝐶𝑜𝑠𝑡𝑠2 =
𝑁

𝑆𝑔
·𝑇𝑢 · 𝑆𝑝 + (𝑇 −𝑇𝑔) · 𝑁 · 𝑆𝑝

+ 𝑁

𝑆𝑔
·𝑇𝑔 · 𝑆𝑡 + (𝑇 −𝑇𝑔) · 𝑁 · 𝑆𝑡

(2)

In Equation 2, the first line shows the total size of posting list
entries of the first and the second level indexes. The posting list
entries in the first level index represent group IDs (totally 𝑁

𝑆𝑔
). Each

group contributes 𝑇𝑢 (the number of unique tags of a group after
deduplication) posting entries to the first level index (a group can be
viewed as a big timeseries and each unique tag occupies one entry
that points to this group ID). The second level index inside a group
is to locate timeseries IDs of group members. Thus, each timeseries
contributes (𝑇 −𝑇𝑔) entries. The second line shows the total size of
tags where we only need to store the grouping tags once for each
group (totally 𝑁

𝑆𝑔
·𝑇𝑔); for the other tags of each timeseries, we need

to store them individually ((𝑇 −𝑇𝑔) · 𝑁).
Grouping can save index space when there is a decent number of

grouping tags or duplicate tags inside a group. Specifically, grouping
can benefit if 𝑆𝑔 > (𝑇𝑢

𝑇𝑔
𝑆𝑝 + 𝑆𝑡)/(𝑆𝑝 + 𝑆𝑡). For instance, this is true

for the TSBS DevOps data set (§4.3) as 𝑆𝑔 = 101, 𝑇𝑢 = 118, 𝑇𝑔 = 1,
𝑆𝑝 = 8 and 𝑆𝑡 = 15.

Session 20: Database Security and Distributed Data Management SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1422

Second, we analyze the querying cost with the latency of data
reading. For EBS, since it behaves like a local disk, we measure
its cost with the reciprocal of the bandwidth. For S3, we measure
the cost with the latency of each Get request, which fetches one
SSTable data block. Then, for the recent data querying, we only
consider 𝐶𝑜𝑠𝑡𝐸𝐵𝑆 because recent data are stored on EBS. While for
the long-range queries,𝐶𝑜𝑠𝑡𝑆3 dominates as mentioned in §2.1. For
a query covering P time partitions, if without grouping, the cost is
shown as follows:

𝐶𝑜𝑠𝑡𝑞1 =

𝐿 · 𝑃 ·

𝑆𝑑𝑎𝑡𝑎

𝑅1
·𝐶𝑜𝑠𝑡𝐸𝐵𝑆 , data on EBS (3)

𝐿 · 𝑃 ·
⌈

𝑆𝑑𝑎𝑡𝑎

𝑆𝑏𝑙𝑜𝑐𝑘 · 𝑅1

⌉
·𝐶𝑜𝑠𝑡𝑆3, data on S3 (4)

Similarly, with grouping, the cost is as follows:

𝐶𝑜𝑠𝑡𝑞2 =

𝐺 · 𝑃 ·

𝑆𝑑𝑎𝑡𝑎 · 𝑆𝑔
𝑅2

·𝐶𝑜𝑠𝑡𝐸𝐵𝑆 , data on EBS (5)

𝐺 · 𝑃 ·
⌈
𝑆𝑑𝑎𝑡𝑎 · 𝑆𝑔
𝑆𝑏𝑙𝑜𝑐𝑘 · 𝑅2

⌉
·𝐶𝑜𝑠𝑡𝑆3, data on EBS (6)

In Equations 5 and 6, with grouping, we have 𝑆𝑑𝑎𝑡𝑎 · 𝑆𝑔 because
based on the key format (i.e. group ID + the tuple starting timestamp,
which is discussed in details in §3.3), the data of all timeseries of a
group in the same tuple are stored together.

Grouping can have a better long-range query performance if
the target timeseries are located in fewer groups (e.g. TSBS pattern
5-1-24 in Table 2). Since a time partition only stores a relatively
small amount of data for each timeseries (𝑆𝑑𝑎𝑡𝑎) and 𝑅2 > 𝑅1 (e.g.
35× compared to 10× in TSBS benchmark), the difference between
⌈𝑆𝑑𝑎𝑡𝑎/(𝑆𝑏𝑙𝑜𝑐𝑘 · 𝑅1)⌉ and ⌈𝑆𝑑𝑎𝑡𝑎𝑆𝑔/(𝑆𝑏𝑙𝑜𝑐𝑘 · 𝑅2)⌉ (e.g. 1 versus 2
in TSBS benchmark) is commonly small with the extra divisor
𝑆𝑏𝑙𝑜𝑐𝑘 . Thus, when G is smaller than L, grouping will have lower
cost. For the short-range query, because the cost relates to the data
volume, grouping may perform worse when the number of target
timeseries in the same group is small. Besides, if 𝐶𝑜𝑠𝑡𝑠2 < 𝐶𝑜𝑠𝑡𝑠1,
as the number of timeseries increases, the grouping can perform
better because of the higher turning point of triggering swap in the
memory-mapped index (e.g. query 1-8-1 in Figure 14).

3.2 Memory Efficiency Exploration
In this section, we redesign the in-memory data structures to reduce
the memory footprints of the inverted index, block metadata, and
data samples mentioned in §2.4.

Inverted index. Instead of creating a separate index for each
time partition and loading it into memory as Prometheus, we man-
age a single global inverted index in memory. As discussed in §2.4,
the nested hash table is not an efficient solution to handle a large

Figure 8: Double-array trie.

Figure 9: Memory-mapped file arrays for data samples.

number of tag pairs. Since a tag pair is a character strings after
concatenating the tag key and value, Trie [8, 34] is a decent choice
to index tag pairs with support of prefix search. In our implemen-
tation, we choose double-array trie [70] for its compact storage
format on a contiguous memory area.

Figure 8 shows an example of storing two tags (metric="cpu",
metric="disk") in a double-array trie where we concatenate tag key
and tag value with delimiter ’$’. Double-array trie essentially is a
finite-state machine, which consists of three arrays. First, we need
to encode the characters into digital indexes as shown at the top of
Figure 8. We start from the root of the trie - the first slot of Base
array, as shown in the state machine in the middle of Figure 8. With
formula 𝑠𝑡𝑎𝑡𝑒 (𝑥𝑦) = 𝐵𝑎𝑠𝑒 (𝑥) + 𝑖𝑛𝑑𝑒𝑥 (𝑦), we can calculate the state
of character ’m’ is 7, which means we need to move to slot 7 of
the Base array for further traversal. The corresponding slot of the
Check stores the slot id of the parent state (e.g. 1 in slot 7 means the
parent of state ’m’ is the root). The traversal stops until we reach
the negative-value Base slot (e.g. 10 for ’c’ and 11 for ’d’). Then, we
use the absolute value of the negative number as the slot id, and
go to the tail array to read the remaining characters (e.g. "pu" and
"isk" starting from slot 1 and 4, respectively).

Considering the size of trie can still grow huge with millions of
tag pairs and trigger the out-of-memory (OOM) problem, we store
these three arrays in three dynamic mmap (memory-mapped) file
arrays. Specifically, each mmap file can handle one million slots;
when more slots are needed, we create new mmap files and append
them to the corresponding arrays.

Timeseries tags. Through the inverted index, we can obtain
the postings list, and through the postings IDs in the postings list,
we can locate the targeted timeseries. For each timeseries, it is
managed as a memory object, which contains all tag pairs and
in-memory data samples of that timeseries. Similarly, to avoid the
OOM problem, we store these tags in mmap files.

Data samples. For each timeseries and group, we batch a small
number of data samples (i.e. 32) in memory for on-the-fly compres-
sion and efficient flushing. This number can be adjusted by users
for the trade-off between compression ratio and memory usage
(i.e. larger chunks have a better compression ratio). Figure 9 shows
different mmap file arrays for timeseries and groups, which can be
dynamically expanded. A mmap file is split into a series of fixed-
size chunks to store the compressed bytes of data samples, and
the header contains a bitmap to indicate the occupation of each
chunk. We store timestamps and metric values together into the
same chunk for the individual timeseries. While we separate the
share timestamps and the metric values for the group. Finally, as
shown in Figure 7, when the current chunk is full, it will be serial-
ized to byte array as the value of a key-value pair and be inserted
into the time-partitioned LSM-tree, and the corresponding area of
the mmap file will be cleaned.

Session 20: Database Security and Distributed Data Management SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1423

Figure 10: Time-partitioned LSM-tree.

3.3 Elastic Time-Partitioned LSM-Tree
In this section, we present an elastic time-partitioned LSM-tree tai-
lored for hybrid cloud storage, which applies different compaction
mechanisms for different storage tiers and can dynamically adapt
to a predefined threshold of fast storage usage.

Key-value format.With keys sorted in SSTables, we can group
and sort timeseries data efficiently. As shown at the top of Figure 10,
we store the timeseries/group ID and the starting timestamp of the
timeseries/group chunk in the first and the second 64 bits with big-
endian encoding, respectively. Thus, we can group the chunks from
the same timeseries/group together, andmeanwhile sort them based
on starting timestamps, which provides data locality to accelerate
scan querying. Besides, such a key format can fully utilize the prefix
compression of keys in LevelDB because the 64-bit ID and a large
portion of timestamp fields can be saved when storing a series of
chunks from the same timeseries/group continuously. For the value
of a key-value pair, we directly use the serialized bytes of the data
chunk of a specific timeseries/group.

Architecture. As shown in Figure 10, the LSM-tree only main-
tains three levels that reside in different storage tiers. Level 0 and
level 1 manage a relatively small volume of timeseries data (i.e. the
recent 2 hours) on the fast cloud storage (i.e. AWS EBS). For the older
data, we only manage them in one level (i.e. level 2) stored on the
slow cloud storage (i.e. AWS S3) to avoid unnecessary compaction.

Since timeseries data is sorted by timestamp, we partition SSTa-
bles based on different time ranges in different levels to control the
size of each level. For level 0 and level 1, the time partition length
starts with a relatively small value (e.g. 30 minutes), which will
be dynamically adjusted based on a predefined size limit of fast
storage. The data samples of the data chunks in the SSTables of a
specific time partition are strictly bounded by the time range of the
partition. When the SSTables are compacted to level 2, several par-
titions are merged to create larger partitions (i.e. 2 hours). Similarly,
this time partition length is also automatically adapted.

Compaction on fast cloud storage.As discussed in §3.1, when
the small chunk of data samples batched in memory is full, it will
be serialized and inserted into the MemTable. When a MemTable is
full, it is switched to an Immutable MemTable and a newMemTable
will be created. To mitigate the insertion blocking during the flush

of Immutable MemTable, we extend LevelDB with an Immutable
MemTable queue to allow multiple flushes at the same time. Dur-
ing the flush of an Immutable MemTable, the key-value pairs are
separated into different time partitions (i.e. 30 minutes initially)
according to the timestamps contained in the keys.

When the accumulated time partitions in level 0 exceed the
threshold (i.e. 2), a compaction from level 0 to level 1 will be trig-
gered to compact the oldest time partition in level 0. There are two
considerations of keeping two levels on the fast storage. First, the
key-value pairs of the same timeseries/group are merged into larger
key-value pairs for a better compression ratio. Second, since the
data chunks of the same timeseries/group in a time partition of level
0 may scatter among different SSTables, during the compaction, we
gather key-value pairs of the same timeseries/group into the same
SSTables for better data locality. If the selected level-0 partition is
out-of-order (stale), TimeUnion will merge it with the overlapping
partitions in level 1.

Compaction on slow cloud storage. When the overall time
span of the time partitions in level 0 exceeds the level-2 partition
length (e.g. 2 hours initially), a compaction from level 1 to level 2
will be triggered. The compaction procedure is as follows. First, the
oldest partitions whose time ranges are within the time range of
the latest time partition in level 2 are selected. Second, key-value
pairs are sort-merged to generate new SSTables and the key-value
pairs of the same timeseries/group are gathered in the same SSTable.
Finally, the new SSTables are uploaded to slow cloud storage and the
temporary SSTables in fast cloud storage are deleted. If the selected
level-1 partitions are out-of-order (stale) and they are overlapped
with existing level-2 partitions, the "patches" will be generated and
appended to the corresponding partitions, which will be introduced
later in the out-of-order data handling.

With this compaction mechanism, we only need one level for
slow cloud storage so as to avoid reading the overlapping SSTables
in the slow storage for the majority of fully-ordered data during
compaction, which significantly reduces the traffic (i.e. the number
ofGet and Put requests) to the slow cloud storage.We show the huge
overhead (slow insertion and recent-data queries) of traditional
LSM-tree design with baseline TU-LDB in the evaluation (§4.3).

Compaction cost analysis. Next, we provide a cost analysis to
show the benefit of only keeping one level in slow storage. Since
the data traffic to slow storage is the main bottleneck as indicated
in §2.1, we measure the cost with the data write size in slow cloud
storage, and compare our design with the traditional multi-level
LSM-tree. Suppose Sd is the data size, Sb is the size of the topmost
level, M is the level size multiplier (the size ratio between adjacent
levels), and Sfast is the size of fast cloud storage. We can calculate
the number of levels L for the traditional LSM-tree to handle Sd as
follows:

𝑆𝑑 =

𝐿−1∑
𝑙=0

𝑆𝑏 ·𝑀𝑙⇒𝑆𝑑 = 𝑆𝑏
1 −𝑀𝐿

1 −𝑀
⇒𝐿 =

𝑙𝑜𝑔(𝑆𝑑 · (𝑀−1)
𝑆𝑏

+ 1)
𝑙𝑜𝑔𝑀

(7)

Similarly, we can use Equation 7 to calculate the number of
levels stored in fast storage Lfast with Sfast. For the normal com-
paction in slow storage, since the data are sorted and partitioned by
timestamps, we can avoid the traditional level-based compaction
which reads and merges all overlapping SSTables on the adjacent
levels. Instead, we only need one actual read and write to compact

Session 20: Database Security and Distributed Data Management SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1424

a SSTable from one level to the next level. The cost (write size) of
the traditional multi-level LSM-tree design is as follows:

𝐶𝑜𝑠𝑡1 = 𝑆𝑏 ·
𝐿−𝐿𝑓 𝑎𝑠𝑡∑

𝑙=1
𝑀𝐿𝑓 𝑎𝑠𝑡+𝑙−1 · 𝑙 (8)

In our design, by maintaining only one level in slow storage, we
can save unnecessary reads and writes in the deeper levels on slow
storage, and the cost is as follows:

𝐶𝑜𝑠𝑡2 = 𝑆𝑑 − 𝑆𝑓 𝑎𝑠𝑡 = 𝑆𝑏 ·
𝐿−𝐿𝑓 𝑎𝑠𝑡∑

𝑙=1
𝑀𝐿𝑓 𝑎𝑠𝑡+𝑙−1 (9)

Let𝐶𝑜𝑠𝑡𝑠𝑎𝑣𝑖𝑛𝑔 represent the cost saving. As shown in Equation 10,
our one-level design can effectively reduce data traffic by avoiding
unnecessary reads/writes from the traditional multi-level. For in-
stance, suppose the topmost level size is 64MB, the size multiplier
is 10, the size of fast storage is 1GB, and the total data size is 100GB.
Then, Lfast is 2.2 and L is 4.2. If we take the floor of Lfast and L, we
can at least save 64GB of data write to slow storage.

𝐶𝑜𝑠𝑡𝑠𝑎𝑣𝑖𝑛𝑔 = 𝑆𝑏 ·
𝐿−𝐿𝑓 𝑎𝑠𝑡∑

𝑙=1
𝑀𝐿𝑓 𝑎𝑠𝑡+𝑙−1 · (𝑙 − 1) (10)

Out-of-order data handling. In this section, we introduce the
mechanism of handling out-of-order data. During the flush of Im-
mutable MemTable, the out-of-order data is detected and inserted
into the corresponding time partition (e.g. 8:30-9:00 time partition
in L0 in Figure 10).

For a compaction of an out-of-order time partition in level 0, if
there are overlapping time partitions in level 1, TimeUnion will
sort-merge them together like traditional level-based compaction. If
there aremultiple data samples of the same timeseries with the same
timestamp, TimeUnion will keep the data sample from the newest
SSTable. In addition, for the group chunks, we need to handle the
inconsistency in two group chunks (i.e. new and missing timeseries)
by filling NULL values to those missing timeseries. Because level
0 and level 1 reside in fast cloud storage, the overhead of merging
the out-of-order time partitions is relatively small.

For the compaction of the out-of-order time partitions from
level 1 to level 2, with the design of time partitioning, we can
avoid the huge overhead of merging SSTables in level 2 stored in
slow cloud storage. Specifically, we record the timeseries/group ID
range of each SSTable in the time partition of level 2. According
to the ID ranges of the SSTables, we separate key-value pairs and
generate special SSTables - namely patches, and append them to
the corresponding time partition in level 2.

To avoid accumulating an excessive number of patches for each
SSTable in level 2, we provide an adjustable threshold number (e.g.

Figure 11: Patches merge in the time partition of level 2.

Algorithm 1: Dynamic Size Control
Input: EBS usage threshold: 𝑆𝑇 ; Level-0 partition length:

𝑅1; Level-2 partition length: 𝑅2; Partition length
lower bound: 𝐿𝐵; Size of level 0 and 1: 𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒

1 𝑡ℎ𝑟𝑒𝑠 = 𝑆𝑇 / 𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒 * 𝑅1;
2 if 𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒 > 𝑆𝑇 then
3 while 𝑅1 / 2 > 𝑡ℎ𝑟𝑒𝑠 && 𝑅1 / 2 > 𝐿𝐵 do
4 𝑅1 /= 2; 𝑅2 /= 2;
5 else if level-1 time span > 0.75 * 𝑅2 then
6 while 𝑅1 * 2 < 𝑡ℎ𝑟𝑒𝑠 do
7 𝑅1 *= 2; 𝑅2 *= 2;

3) for users. When the number of patches of an SSTable exceeds
the threshold, a merge will be triggered to merge that SSTable and
all its patches. As shown in Figure 11, SSTable 1 and its patches are
merged, and two new SSTables are generated (i.e. SSTable 1-1 and
SSTable 1-2) with disjoint ID ranges.

Dynamic size control. Considering the relatively high cost
of fast cloud storage, we need to store as much data as possible
on the limited available volume of fast storage. Thus, we propose
a mechanism to automatically adapt the fast storage usage to a
predefined threshold by adjusting the time partition length, and
the basic logic is shown in Algorithm 1. We decrease the partition
lengths if the current size of level 0 and level 1 exceeds the threshold.
We increase the partition lengths if the overall time span of level
1 is large enough but the total size is smaller than the threshold
(e.g. data samples are sparse, or the number of timeseries is small).
Besides, for easy time partition alignment during compaction, we
multiply/divide the adjustable time partition lengths by 2 during
dynamic controlling.

With dynamic size controlling, we may need to handle time
partitions with different time partition lengths during a compaction.
Thus, careful time partition splitting and aligning are required, and
the policy is as follows:
(1) For L0-L1 compaction, since all overlapping SSTables will be

read and merged, TimeUnion utilizes the shortest time parti-
tion length of all selected partitions as the length of the new
partitions, and align them with it.

(2) For L1-L2 compaction, since data in overlapping level-2 par-
titions will not be merged, TimeUnion needs to keep these
partitions and generate patches for them. While for the time
ranges not covered by the selected level-2 partitions, they will
be split and aligned with the shortest time partition length of
the selected level-2 partitions.
An example is provided in Figure 12. As shown in the left part

of Figure 12, the L0-L1 compaction generates new partitions with

Figure 12: Partition aligning during compaction.

Session 20: Database Security and Distributed Data Management SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1425

the shortest time partition length (15 minutes of "8:00-8:15" par-
tition). For the L1-L2 compaction in the right, the "8:30-8:45" and
"9:00-10:00" level-2 partitions keep unchanged. While for the time
ranges that are not covered by these two partitions, they are split
and aligned based on the shortest level-2 time partition length (15
minutes of "8:30-8:45" partition).

Logging. To recover the in-memory indexes, data samples,
MemTable, and Immutable MemTables from a crash, we disable the
original logging in LevelDB and redesign a new logging scheme. For
each timeseries and group, we have a sequence ID, which is logged
and incremented with each inserted data sample. When a data
chunk is flushed to the time-partitioned LSM-tree, the sequence ID
is embedded at the beginning of the serialized bytes. Then, when a
MemTable is flushed to level 0, for each key-value pair, we will write
a special log record with the corresponding sequence ID to indicate
that all the log entries of this timeseries/group with sequence IDs
before this ID are safe to be removed, and a background worker
will purge those stale log records periodically.

Data retention. Since people commonly care more about the
recent data, the efficient data retention mechanism for purging
too-old data is a critical design decision of timeseries management
systems. In TimeUnion, a background worker will periodically
check for old time partitions outside the retention time watermark
provided by the user. Then, the SSTables contained in those old
partitions can be removed efficiently. Besides, we need to purge the
memory objects for those old timeseries whose data samples are all
removed. Specifically, we record the timestamp of the latest data
sample for each timeseries in its memory object, and we will purge
those objects that are older than the retention timestamp.

3.4 TimeUnion Operations
In this section, we introduce the operations in TimeUnion to insert
and query timeseries data.

Put (Timeseries). Similar to Prometheus tsdb, TimeUnion pro-
vides two APIs to insert data samples of individual timeseries. The
first API requires the tags of a timeseries, a timestamp, and a metric
value of that timeseries, and it returns a 64-bit integer ID for the
corresponding timeseries. In the second API, instead of passing
timeseries tags, users only pass the timeseries ID returned by the
first API for fast insertion, which saves the cost of comparing tags.

Put (Group). Similarly, TimeUnion provides two APIs for group
data sample insertion. The first API requires a series of grouping
tags, an array of individual timeseries tags, a shared timestamp,
and an array of metric values corresponding to each passed group
timeseries. For individual timeseries in the group memory object,
we manage their tag sets in an appending array with the order
when they are inserted. When inserting group timeseries through
this API, it will check whether they have been already recorded in
the array. If not, it will append a new timeseries to the end of the
array, and insert the metric value to the corresponding timeseries
object. Finally, it will return a group ID, and a series of timeseries
slot indexes which indicate the positions of the inserted timeseries
inside the group array. In the second API, users pass a group ID, a
series of timeseries slot indexes, a shared timestamp, and an array
of metric values for fast insertion.

Get. For a query in TimeUnion, users need to pass a time range
and a set of tag selectors, which can be exact or regular-expression
match (e.g.metric="cpu" ormetric="disk.*"). TimeUnion first queries
the inverted index with the tag selectors to get all the related time-
series/group IDs, then queries the memory objects and the time-
partitioned tree using these IDs. Finally, it returns a timeseries set
containing all the related timeseries appearing in the given time
range. For each timeseries in the timeseries set, users can obtain
its iterator to iteratively get its data samples with a merge iterator
which connects the individual iterators of all related MemTables
and SSTables.

4 EVALUATION
4.1 Experiment Setup
We conduct experiments on an AWS general purpose EC2 instance
(type m5.2xlarge in ap-northeast-1 with Ubuntu 20.04 server) with
general-purpose EBS SSD volume attached as the fast cloud storage.
For slow cloud storage, we create a bucket of AWS S3 under the
same data region of EC2. To avoid crashing the EC2 instance during
evaluation with highmemory pressure, we set up a cgroup [53] with
memory restriction and 16GB swap space during the evaluation.

Implementation. We prototype TimeUnion from scratch in
C++ with the inverted index derived from Cedar double-array
trie [70] and the time-partitioned LSM-tree derived from Lev-
elDB [51]. The source code of TimeUnion is available at [2].

Comparison systems.We first conduct an end-to-end compar-
ison with Cortex [23], a recently popular open-sourced cloud-based
timeseries management system, where we utilize HTTP APIs for
insertion and querying. Second, to exclude the overhead of network
latency via HTTP APIs and the overhead of component communi-
cation of Cortex, we directly benchmark the storage engines. Since
Cortex’s storage engine is based on Prometheus tsdb (the storage
engine of Prometheus), we extend Prometheus tsdb with cloud
storage support (marked as "tsdb" in the following experiments).
Besides, we implement two extra baselines as follows: (a) tsdb with
LevelDB as data sample storage (tsdb-LDB) in which the samples of
the flushed time partitions are stored in LevelDB whose SSTables
are stored in S3 (b) TimeUnion with LevelDB as data sample storage
(TU-LDB), which stores the first two levels on EBS and the other
levels on S3. These two baselines leverage the same LevelDB key
format as TimeUnion (§3.3).

Configurations. For all evaluated systems, we equip a 1GB in-
memory LRU cache to cache the data segments fetched from S3
during querying. For the data insertion of tsdb-based and TimeU-
nion-based systems in §4.3, we use the fast-path insertion API as in-
troduced in §3.4. For the EBS usage of TimeUnion, since Prometheus
tsdb stores the latest 2-hour data in RAM, to make the evaluation
fair, when comparing with tsdb-based systems, we turn off dynamic
size controlling and fix the level-2 partition length as 2 hours to
make TimeUnion only store the latest 2-hour data on EBS, while
the older data are stored on S3.

4.2 End-To-End Evaluation
In this experiment, we compare the end-to-end performance of
TimeUnion and Cortex [23], an open-sourced timeseries manage-
ment system with cloud storage support. We utilize HTTP APIs to

Session 20: Database Security and Distributed Data Management SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1426

(a) Insertion (b) Query 5-1-24 (c) Query 5-8-1 (d) Memory Usage

Figure 13: End-to-end evaluation.

insert and query data in both systems, and we utilize TSBS [57], a
widely-used benchmark suite for timeseries systems, to generate
timeseries tags and query patterns. The insertion API is Prometheus
remote write API [9] without streaming support. Thus, we transmit
a large batch (i.e. 10,000 samples) in each HTTP request to increase
throughput for all systems. For the insertion timeseries, we uti-
lize the DevOps timeseries generated by TSBS, where each host
contains 101 timeseries to simulate different system/application
metrics (e.g. cpu usage, number of inserted Postgres tuples, number
of Redis expired keys, etc.). The query patterns in TSBS can be
found in Table 2.

Figure 13 shows the experiment results with different numbers
of timeseries (each timeseries contains 24 hours of data and the
interval between two data samples is 60 seconds). Since HTTP APIs
are slow, the experiments are conducted under a medium volume of
dataset (maximally 2 million timeseries with a total of 1.44 billion
data samples). TU represents TimeUnion with slow-path insertion
(each sample insertion with timeseries tags); TU-fast represents
TimeUnion with fast-path insertion (the first insertion is with time-
series tags, while the following insertions are with corresponding
timeseries IDs); and TU-Group represents TimeUnion with group-
style insertion with fast-path (the timeseries from the same host
form a group). Besides, Cortex does not support fast-path insertion
as discussed in Section 3.4.

As shown in Figure 13a, TU’s insertion throughput is 26.6%
higher than that of Cortex because of the gRPC [28] communication
of internal components of Cortex, which accumulates with HTTP
insertion requests. TU-fast’s throughput is 6.6× higher than that

Table 2: TSBS query patterns.

TSBS Query Description
1-1-1 Aggregate (MAX) on 1 metric for 1 host,

every 5 mins for 1 hour.
1-1-24 Aggregate (MAX) on 1 metric for 1 host,

every 5 mins for 24 hours.
1-8-1 Aggregate (MAX) on 1 metric for 8 hosts,

every 5 mins for 1 hour.
5-1-1 Aggregate (MAX) on 5 metrics for 1 host,

every 5 mins for 1 hour.
5-1-24 Aggregate (MAX) on 5 metrics for 1 host,

every 5 mins for 24 hours.
5-8-1 Aggregate (MAX) on 5 metrics for 8 hosts,

every 5 mins for 1 hour.
lastpoint The last reading of 1 CPU metric of one host.

of TU, because it saves the serialization cost of tags for each data
sample. TU-Group is 2.9× faster than TU-fast because it further
deduplicates timestamps for a set of timeseries and reduces the
number of HTTP requests through grouping.

Figure 13b shows the query latencies of query pattern 5-1-24.
Cortex and tsdb-LDB are 30.4× and 1.4× slower than TU because
they need to read the indexes in the partitions stored in S3, and
the index reading of Cortex is inefficient where it needs to load the
whole index intomemory in advance. For pattern 5-8-1 in Figure 13c,
Cortex is 2.0× slower than TU, and the latencies of other systems
are close to each other. In Figure 13d, the memory usage of Cortex
is 96.8% and 2.4× higher compared with TU and TU-Group.

4.3 Storage Engine Evaluation
To exclude the influence of network latency and internal system
components, in this section, we directly benchmark the storage
engines with a large data scale. We configure CGroup with a 16GB
memory restriction. For all systems, we insert 24 hours of data with
30 seconds (except for big timeseries evaluation) as the sample inter-
val for each timeseries with fast-path insertion. First, we evaluate
them with DevOps timeseries generated by TSBS as mentioned in
§4.2. For each comparison system, we gradually addmore timeseries
in each test round until it is killed by OOM or the performance has
a significant degradation. Second, we evaluate TSBS with big De-
vOps timeseries (denser data samples and larger time span). Third,
we monitor and compare the memory usage of different systems.
Fourth, we evaluate TSBS with all data only stored on EBS. Finally,
we evaluate different configurations and properties of TimeUnion,
including (a) different EBS usage constraints; (b) different volumes
of out-of-order data; (c) the dynamic size controlling algorithm.

DevOps timeseries. Figure 14a shows the insertion throughput,
where the performances of tsdb and tsdb-LDB significantly degrade
when there are 2.6 and 2 million timeseries, respectively, while
TimeUnion can manage up to 12 million timeseries. On average,
the throughput of TimeUnion is 24.8% and 13.2% higher than that
of tsdb and tsdb-LDB, respectively. This is because the background
cleaning of tsdb after flushing incurs contention with foreground
insertion. Furthermore, the insertion throughput of TU-Group is
2.4× higher than that of TU because of the coarser-grained index
lookup during insertion. TU-LDB dose not perform well because of
the inefficient compaction which reads and merges a large number
of overlapping SSTables on S3. Besides, tsdb-LDB performs bet-
ter than TU-LDB because tsdb-LDB flushes in-memory partitions
to LevelDB in the background without affecting the foreground

Session 20: Database Security and Distributed Data Management SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1427

(a) Insertion (b) Query 1-1-1 (c) Query 1-1-24 (d) Query 1-8-1

(e) Query 5-1-1 (f) Query 5-1-24 (g) Query 5-8-1 (h) Query lastpoint

Figure 14: Evaluation with DevOps timeseries (30s sample interval, 24 hours time span).

(a) Insertion (b) Query 1-1-all (c) Query 5-1-all (d) Query 5-8-1

Figure 15: Evaluation with big DevOps timeseries (10s sample interval, 1-7 days time span).

insertion. Thus, tsdb-LDB can accumulate an excessive amount
of pending data in memory because its compaction is as slow as
TU-LDB.

When querying recent data (1-1-1, 1-8-1, 5-1-1, 5-8-1, and last-
point), TU performs generally better than tsdb and tsdb-LDB (e.g.
29.7% and 41.2% lower latency on average). Compared with TU-
Group, TU performs better even when the queried timeseries are
located in the same group (e.g. 5-1-1 and 5-8-1). This is because the
recent data is stored in fast EBS, and latency mainly relates to the
queried data size as shown in Equations 3 and 5. Because the queried
data size of TU is smaller than that of TU-Group (𝑆𝑔 counteracts
the benefit of 𝐺 < 𝐿), TU will perform better (𝐶𝑜𝑠𝑡𝑞1 < 𝐶𝑜𝑠𝑡𝑞2).
However, as the number of timeseries increases, the latency of TU-
Group is more stable because it is more memory-efficient than TU
(𝐶𝑜𝑠𝑡𝑠2 < 𝐶𝑜𝑠𝑡𝑠1 in Equations 1 and 2). TU-LDB performs the worst
(178.8× higher latency than TU) because, without time partitioning,
the recent data are scattered in the SSTables on top levels which
have not yet been further compacted.

When querying long-range data (1-1-24 and 5-1-24), TU performs
orders of magnitude better than tsdb and tsdb-LDB, because tsdb
needs to fetch those large indexes in old time-partitions from S3 and
incurs frequent cache eviction and memory swapping. Compared

with TU, in query 1-1-24, TU-Group has 2.8× higher latency. The
reason is 𝐿 = 1 in Equation 4 and 𝐺 = 1 in Equation 6, and the
ceiling function in Equation 6 generates a slightly larger value than
that of Equation 4, which results in𝐶𝑜𝑠𝑡𝑞1 < 𝐶𝑜𝑠𝑡𝑞2; while for query
5-1-24, TU has 13.1× higher latency because 𝐿 = 5 in Equation 4
incurs a larger 𝐶𝑜𝑠𝑡𝑞1. The latency of TU-LDB is similar to that of
TU because compaction in deeper levels of TU-LDB gathers the
data from the same timeseries with our key format, which increases
data locality.

Big DevOps timeseries. In Figure 15, we evaluate TSBS with
big timeseries (10s sample interval and 1-7 days of time span). By
default, the number of timeseries is 100K for all systems. This is
because, for tsdb and tsdb-LDB, the throughput of data flushing
is much lower than that of insertion, thus a huge amount of data
samples can be temporarily accumulated in memory, which triggers
OOM (Out of Memory) killing, and 100K is the limit for both tsdb
and tsdb-LDB. For TimeUnion, because of its memory efficiency and
high flushing throughput, we provide another set of experiments
with more timeseries (1M). For insertion, the throughput of TU is
21.0%, 8.8%, and 12.2× higher compared with tsdb, tsdb-LDB, and
TU-LDB, respectively, and TU-Group performs 2.6× better than
TU. For query, we add two new patterns (1-1-all, 5-1-all), which

Session 20: Database Security and Distributed Data Management SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1428

(a) Average memory usage (b) Real-time monitoring

Figure 16: Memory usage monitoring.

query the whole time span in the corresponding test run. For 1-1-
all, the latencies of tsdb, tsdb-LDB, and TU-Group are three orders
of magnitude, 9.8×, and 2.2× higher compared with TU. 5-1-all
has a similar trend except that TU-Group performs 15.7% better
than TU because queried timeseries are from the same group. For
5-8-1, the latencies of tsdb and tsdb-LDB are 33.1% and 5.1% lower
compared with TU. This is because tsdb only needs to read the in-
memory block and tsdb’s hash-based indexing is more efficient than
TimeUnion’s mmaped-trie-based indexing with ample memory (we
carry out the experiment after all pending samples are flushed). For
TU-LDB, it performs better (49%) than TU for the long-range query
because, without time partitioning, the data of the same timeseries
are gathered in fewer SSTables in the deeper levels after many
compactions, while it performs the worst for recent data queries
because of the poor data locality of SSTables in top levels.

Memory usage monitoring. Figure 16a shows the average
memory usage of the experiments in Figure 14. We omit tsdb-
LDB and TU-LDB because they are similar to tsdb and TU, re-
spectively. The memory usage of tsdb reaches the CGroup 16GB
memory restriction when the number of timeseries is 2.2 million.
For TimeUnion, when the number of timeseries becomes larger
than 7 million, the OS positively swaps out those not frequently
used memory-mapped pages to mitigate memory pressure. On av-
erage, the memory usage of tsdb is 2.6× and 3.6× higher than that
of TU and TU-Group, respectively.

Figure 16b shows the real-time memory usage (resident set size)
of tsdb and TU in the test rounds of 2.4 million and 12 million time-
series in the experiments in Figure 14. For tsdb, the data insertion
finishes at 4550 seconds (for 2.4M timeseries), and the memory
usage is skyrocketing until it reaches the 16GB memory limit and
is forced to swap. Then, the system waits for all compactions to be
finished, and finally, the system executes the TSBS queries, which in-
cur intensive memory fluctuation. For TU, data insertion finishes at
12530 seconds (for 12M timeseries), and the memory usage remains
stable at around 12GB. The not frequently used memory-mapped
pages are swapped out in advance to mitigate the memory pressure.

EBS-only evaluation. In Figure 17, we repeat the experiments
in Figure 14 with all data stored on EBS. For insertion, the results
are similar to Figure 14a, the throughput of TU is 28.8% and 34.0%
higher compared with tsdb and tsdb-LDB, respectively, and TU-
Group performs 2.1× better than TU. Besides, TU-LDB is only 19.4%
worse than TU because the compaction on EBS is faster than on
S3. For query, because of the space limitation, we show the results
of the test round of 1M timeseries and we observe similar trends
as Figure 14. For query patterns that cover recent data, tsdb and

(a) Insertion (b) Query (1M timeseries)

Figure 17: Evaluation with only EBS.

(a) Different EBS usage (b) Out-of-order data

Figure 18: Evaluation with different constraints.

tsdb-LDB exhibit similar performance to TU because they only need
to access the in-memory block. For larger queries (1-1-24, 5-1-24),
tsdb and tsdb-LDB are 4.9× and 55.6% slower than TU because of
inefficient index reading across blocks. Besides, TU performs better
than TU-Group because, with EBS only, we have 𝐶𝑜𝑠𝑡𝑞1 < 𝐶𝑜𝑠𝑡𝑞2
based on Equations 3 and 5.

Different EBS limits. Figure 18a shows the normalized results
(throughput for insert, latency for query) of TimeUnion under dif-
ferent EBS limits (1M timeseries, 10s sample interval). Based on our
dynamic size control algorithm, with a larger EBS limit, the time
partition length can be larger so that more SSTables can be placed at
the first two levels. For insertion, the performance is stable because
of the efficient compaction. For short-range queries (e.g. 1-1-1),
the latency is high when EBS cannot cover all the data in the last
hour. As the EBS limit increases, the latency first drops, and then
gradually increases because more SSTables need to be checked as
the partition length increases. For long-range queries (e.g. 5-1-24),
the latency gradually decreases as the EBS limit increases because
more data can be stored on EBS.

Different amounts of out-of-order data. Since Prometheus
tsdb does not support out-of-order data, we only evaluate Time-
Union with different amounts of out-of-order data in Figure 18b
(1M timeseries with 10s sample interval). After the normal data in-
sertion, we randomly insert different portions of out-of-order data
of randomly picked timeseries (p5 represents that the volume of
out-of-order data is 5% of the normal data). For insertion, the influ-
ence of out-of-order data is subtle because of efficient compaction.
For short-range queries, the latency increase is small (3%) because
data is on fast EBS. On the other hand, the latency of long-range
queries gradually increases with more out-of-order data because
more SSTables on S3 need to be read.

Dynamic size control. In Figure 19, we evaluate our dynamic
size control algorithm with 1M timeseries and 512MB EBS limit. We

Session 20: Database Security and Distributed Data Management SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1429

Figure 19: Dynamic size control with 512MB EBS limit.

start with a 30-minute time partition length and insert data with
a dense sample interval of 10 seconds. As the EBS usage exceeds
512MB, the partition length decreases to 15 minutes to reduce the
size of the first two levels. Next, we increase the sample interval
to 60 seconds. Since the data size in a time partition decreases,
the partition length gradually increases to 120 minutes. Then, we
pressure the system again by inserting data with a 10-second sample
interval. It can be observed that the partition length gradually
decreases to 15 minutes, and the EBS usage remains stably under
512MB.

Index/Data size comparison. Table 3 shows the index and
data sizes in the test round of 2 million timeseries in Figure 14. The
index size of tsdb is 21.4% and 48.6% higher than that of TU and
TU-Group, respectively, because tsdb generates a separate index
for each time partition, which incurs duplicate data. We calculate
timeseries data size by summing all the data chunks files for tsdb
and all the SSTables for TimeUnion, respectively. The data size of
tsdb is 1.35× higher than that of TU because data blocks in SSTables
are further compressed by Snappy [1]. Furthermore, the data size
of TU-Group is 71.9% lower than that of TU because group data
chunk deduplicates timestamps.

5 RELATEDWORK
The design of TimeUnion refers to extensive past works of time-
series management systems, LSM-tree-based key-value stores, and
systems deployed on hybrid storage.

Timeseriesmanagement systems. In addition to Prometheus,
InfluxDB, and Cortex as discussed in §2, there are previous works
on timeseries management systems. BtrDB [7] targets at the teleme-
try timeseries with nanosecond level precision, which proposes a
novel time partition tree for each timeseries as the index. However,
this design can only handle a limited number of timeseries because
the indexing structure is memory-consuming. Gorilla [46] presents
an in-memory timeseries database for performance monitoring
in Facebook; the delta-of-delta timestamps and XOR’d floating-
point values proposed in this paper are widely used in the existing
timeseries management systems. Timon [13] aims at handling the
out-of-order timeseries data with the TS-LSM-Tree and SEDA pro-
gramming model [62]. It is different from our time-partitioned
LSM-tree because we have different compaction and out-of-order
data handling mechanisms for different cloud storage tiers. Besides,
we have dynamic level size adjustment for cost-efficiency. IBM Db2
Event Store [27] leverages hybrid MPP (massively parallel process-
ing) share nothing/share disk cluster architecture, which manages
data in different zones with Parquet file format [22] for fast inges-
tion. ByteSeries [54] aims at high-dimensional and dynamic time-
series by reducing the metadata memory footprints. Peregreen [60]

Table 3: Index and data size of 2M timseries (GB).

tsdb TU TU-Group
Index 3.27 2.70 2.20
Data 20.28 8.61 2.42

focuses on handling a large volume of historical timeseries data
totally on S3; however, timeseries are simply indexed by an integer
ID without utilizing tags. Thus, it is inconvenient to differentiate
timeseries and support complex queries.

LSM-tree-based key-value stores. PebblesDB [50] proposes
the fragmented LSM-tree, which partitions the key range of each
level into guards (partitions), and the boundary of each guard is
determined by the inserted keys with a certain probability. During a
compaction, PebblesDB does not need to read the overlapping SSTa-
bles in the next level; instead, it simply splits the selected SSTable
according to the guard boundaries and appends the split parts to
the corresponding guards. Dostoevsky [19] targets at the trade-off
between tiered and leveled compaction [33], which proposes lazy
leveling that remove the sorted runs merging from all levels but
the largest. Mutant [69] proposes a storage layer for LSM-tree data
stores to strike a cost-performance balance with different types of
cloud storage tiers; withMutant’s cost model, SSTables are migrated
among different storage tiers correspondingly.

Systems with hybrid cloud storage. Alluxio [35] builds an
indirection layer above the existing cloud storage systems to sup-
port the storage of different data systems such as Spark, Flink,
and Presto [24–26]. Pangea [73] proposes a monolithic general-
purpose storage system that can handle all different types of data.
Pocket [32] proposes a distributed data store for ephemeral objects
of the serverless analysis with sub-second response time; it strikes
cost efficiency among different volume types (HDD, SSD, NVMe)
of EBS.

6 CONCLUSION
In this paper, we present TimeUnion, an efficient timeseries man-
agement system with a unified data model tailored for hybrid cloud
storage services. We explore the characteristics of cloud storage,
propose a unified tiemseries data model, mitigate the imbalanced
resource usage of the timeseries management system, and present
our time-partitioned LSM-tree with tailored compaction mecha-
nism, out-of-order data handling, and dynamic level size adjustment.
Compared to the storage engine of Cortex, TimeUnion can han-
dle at least 5× more timeseries, and achieve at least 24.8% higher
insertion throughput and 49.8% lower query latency.

ACKNOWLEDGMENTS
The work described in this paper is partially supported by the
grants from the Research Grants Council of the Hong Kong Special
Administrative Region, China (GRF 15224918), and Direct Grant
for Research, The Chinese University of Hong Kong (Project No.
4055151).

Session 20: Database Security and Distributed Data Management SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1430

REFERENCES
[1] 2021. Snappy | A fast compressor/decompressor. https://github.com/google/snappy.
[2] 2021. TimeUnion Source Code. https://github.com/naivewong/timeunion.
[3] Inc. or its affiliates 2020, Amazon Web Services. 2021. Amazon EC2. https:

//aws.amazon.com/ec2/.
[4] Inc. or its affiliates 2020, Amazon Web Services. 2021. Amazon Elastic Block Store.

https://aws.amazon.com/ebs/.
[5] Inc. or its affiliates 2020, Amazon Web Services. 2021. Amazon Lambda. https:

//aws.amazon.com/lambda/.
[6] Inc. or its affiliates 2020, Amazon Web Services. 2021. Amazon S3. https:

//aws.amazon.com/s3/.
[7] Michael P Andersen andDavid E. Culler. 2016. BTrDB: Optimizing Storage System

Design for Timeseries Processing. In 14th USENIX Conference on File and Storage
Technologies (FAST 16). USENIX Association, Santa Clara, CA, 39–52. https:
//www.usenix.org/conference/fast16/technical-sessions/presentation/andersen

[8] J. Aoe, K. Morimoto, and Takashi Sato. 1992. An efficient implementation of trie
structures. Software: Practice and Experience 22 (1992).

[9] Prometheus Authors. 2020. Prometheus remote write. https://prometheus.io/docs/
prometheus/latest/configuration/configuration/#remote_write.

[10] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel, Huapeng
Yuan, Aashray Arora, Karan Gupta, and Pavan Konka. 2017. TRIAD: Creating
Synergies Between Memory, Disk and Log in Log Structured Key-Value Stores. In
2017 USENIX Annual Technical Conference (USENIX ATC 17). USENIX Association,
Santa Clara, CA, 363–375. https://www.usenix.org/conference/atc17/technical-
sessions/presentation/balmau

[11] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravishankar Chand-
hiramoorthi, and Diego Didona. 2019. SILK: Preventing Latency Spikes in
Log-Structured Merge Key-Value Stores. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). USENIX Association, Renton, WA, 753–766. https:
//www.usenix.org/conference/atc19/presentation/balmau

[12] Oana Balmau, Rachid Guerraoui, Vasileios Trigonakis, and Igor Zablotchi. 2017.
FloDB: Unlocking Memory in Persistent Key-Value Stores. In Proceedings of the
Twelfth European Conference on Computer Systems (Belgrade, Serbia) (EuroSys
’17). Association for Computing Machinery, New York, NY, USA, 80–94. https:
//doi.org/10.1145/3064176.3064193

[13] Wei Cao, Yusong Gao, Feifei Li, Sheng Wang, Bingchen Lin, Ke Xu, Xiaojie Feng,
YucongWang, Zhenjun Liu, and Gejin Zhang. 2020. Timon: A Timestamped Event
Database for Efficient Telemetry Data Processing and Analytics. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data (Portland,
OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY,
USA, 739–753. https://doi.org/10.1145/3318464.3386136

[14] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and Yinlong Xu. 2018. HashKV:
Enabling Efficient Updates in KV Storage via Hashing. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA, 1007–
1019. https://www.usenix.org/conference/atc18/presentation/chan

[15] Google Cloud. 2021. Cloud Persistent Disk. https://cloud.google.com/persistent-
disk.

[16] Google Cloud. 2021. Google Cloud Storage. https://cloud.google.com/storage/.
[17] Alexander Conway, Abhishek Gupta, Vijay Chidambaram, Martin Farach-Colton,

Richard Spillane, Amy Tai, and Rob Johnson. 2020. SplinterDB: Closing the
Bandwidth Gap for NVMe Key-Value Stores. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, 49–63. https://www.usenix.
org/conference/atc20/presentation/conway

[18] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal
Navigable Key-Value Store. In Proceedings of the 2017 ACM International Confer-
ence on Management of Data (Chicago, Illinois, USA) (SIGMOD ’17). Association
for Computing Machinery, New York, NY, USA, 79–94. https://doi.org/10.1145/
3035918.3064054

[19] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-
Offs for LSM-Tree Based Key-Value Stores via Adaptive Removal of Superfluous
Merging. In Proceedings of the 2018 International Conference on Management of
Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing Machinery,
New York, NY, USA, 505–520. https://doi.org/10.1145/3183713.3196927

[20] Niv Dayan and Stratos Idreos. 2019. The Log-StructuredMerge-Bush & theWacky
Continuum. In Proceedings of the 2019 International Conference on Management of
Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing Ma-
chinery, New York, NY, USA, 449–466. https://doi.org/10.1145/3299869.3319903

[21] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2010. FlashStore: High Throughput
Persistent Key-Value Store. Proc. VLDB Endow. 3, 1–2 (Sept. 2010), 1414–1425.
https://doi.org/10.14778/1920841.1921015

[22] Apache Software Foundation. 2020. Apache Parquet. https://parquet.apache.org/.
[23] Cloud Native Computing Foundation. 2020. Horizontally scalable, highly available,

multi-tenant, long term Prometheus. https://cortexmetrics.io/.
[24] The Apache Software Foundation. 2021. Apache Flink - Stateful Computations

over Data Streams. https://flink.apache.org/.
[25] The Apache Software Foundation. 2021. Apache Spark - Lightning-fast unified

analytics engine. https://spark.apache.org/.

[26] The Presto Foundation. 2021. Presto - Distributed SQL Query Engine for Big Data.
https://prestodb.io/.

[27] Christian Garcia-Arellano, Hamdi Roumani, Richard Sidle, Josh Tiefenbach,
Kostas Rakopoulos, Imran Sayyid, Adam Storm, Ronald Barber, Fatma Ozcan,
Daniel Zilio, Alexander Cheung, Gidon Gershinsky, Hamid Pirahesh, David
Kalmuk, Yuanyuan Tian, Matthew Spilchen, Lan Pham, Darren Pepper, and Gal
Lushi. 2020. Db2 Event Store: A Purpose-Built IoT Database Engine. Proc. VLDB
Endow. 13, 12 (Aug. 2020), 3299–3312. https://doi.org/10.14778/3415478.3415552

[28] 2021 gRPC Authors. 2020. gPRC, A high performance, open source universal RPC
framework. https://grpc.io/.

[29] influxdata. 2020. InfluxDB 1.7 Documentation. https://docs.influxdata.com/
influxdb/.

[30] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H. Noh, and Young ri
Choi. 2019. SLM-DB: Single-Level Key-Value Store with Persistent Memory.
In 17th USENIX Conference on File and Storage Technologies (FAST 19). USENIX
Association, Boston, MA, 191–205. https://www.usenix.org/conference/fast19/
presentation/kaiyrakhmet

[31] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea Arpaci-Dusseau, and
Remzi Arpaci-Dusseau. 2018. Redesigning LSMs for Nonvolatile Memory with
NoveLSM. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA, 993–1005. https://www.usenix.org/conference/atc18/
presentation/kannan

[32] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Server-
less Analytics. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 427–444. https:
//www.usenix.org/conference/osdi18/presentation/klimovic

[33] Bradley C Kuszmaul. 2014. A comparison of fractal trees to log-structured merge
(LSM) trees. Tokutek White Paper (2014).

[34] V. Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree:
ARTful indexing for main-memory databases. Proceedings - International Confer-
ence on Data Engineering, 38–49. https://doi.org/10.1109/ICDE.2013.6544812

[35] Haoyuan Li. 2018. Alluxio: A Virtual Distributed File System.
[36] Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, and Yinlong Xu. 2019. ElasticBF:

Elastic Bloom Filter with Hotness Awareness for Boosting Read Performance in
Large Key-Value Stores. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19). USENIX Association, Renton, WA, 739–752. https://www.usenix.org/
conference/atc19/presentation/li-yongkun

[37] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. 2011. SILT:
A Memory-Efficient, High-Performance Key-Value Store. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles (Cascais, Portugal)
(SOSP ’11). Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/2043556.2043558

[38] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. 2014.
MICA: A Holistic Approach to Fast in-Memory Key-Value Storage. In Proceedings
of the 11th USENIX Conference on Networked Systems Design and Implementation
(Seattle, WA) (NSDI’14). USENIX Association, USA, 429–444.

[39] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakrishnan,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2017. WiscKey: Sepa-
rating Keys from Values in SSD-Conscious Storage. ACM Trans. Storage 13, 1,
Article 5 (March 2017), 28 pages. https://doi.org/10.1145/3033273

[40] F. Mei, Q. Cao, H. Jiang, and Jingjun Li. 2018. SifrDB: A Unified Solution for
Write-Optimized Key-Value Stores in Large Datacenter. Proceedings of the ACM
Symposium on Cloud Computing (2018).

[41] Prashanth Menon, Tilmann Rabl, Mohammad Sadoghi, and Hans-Arno Jacob-
sen. 2014. Optimizing Key-Value Stores for Hybrid Storage Architectures. In
Proceedings of 24th Annual International Conference on Computer Science and
Software Engineering (Markham, Ontario, Canada) (CASCON ’14). IBM Corp.,
USA, 355–358.

[42] Microsoft. 2021. Azure Blob Storage | Microsoft. https://azure.microsoft.com/en-
us/services/storage/blobs/.

[43] Microsoft. 2021. Azure Disk Storage | Microsoft. https://azure.microsoft.com/en-
us/services/storage/disks/.

[44] OKLog. 2020. Universally Unique Lexicographically Sortable Identifier. https:
//github.com/oklog/ulid.

[45] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
Log-Structured Merge-Tree (LSM-Tree). Acta Inf. 33, 4 (01 June 1996), 351–385.
https://doi.org/10.1007/s002360050048

[46] Tuomas Pelkonen, Scott Franklin, Paul Cavallaro, Qi Huang, Justin Meza, Justin
Teller, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable, In-Memory
Time Series Database. PVLDB 8, 12 (2015), 1816–1827. https://doi.org/10.14778/
2824032.2824078

[47] Bartlomiej Plotka. 2020. Thanos - Highly available Prometheus setup with long
term storage capabilities. A CNCF Incubating project. https://github.com/thanos-
io/thanos.

[48] Prometheus. 2020. Node exporter - Exporter for machine metrics. https://github.
com/prometheus/node_exporter.

[49] Prometheus. 2020. Prometheus - From metrics to insight, power your metrics and
alerting with a leading open-source monitoring solution. https://prometheus.io/.

Session 20: Database Security and Distributed Data Management SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1431

https://github.com/google/snappy
https://github.com/naivewong/timeunion
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ebs/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://www.usenix.org/conference/fast16/technical-sessions/presentation/andersen
https://www.usenix.org/conference/fast16/technical-sessions/presentation/andersen
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#remote_write
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#remote_write
https://www.usenix.org/conference/atc17/technical-sessions/presentation/balmau
https://www.usenix.org/conference/atc17/technical-sessions/presentation/balmau
https://www.usenix.org/conference/atc19/presentation/balmau
https://www.usenix.org/conference/atc19/presentation/balmau
https://doi.org/10.1145/3064176.3064193
https://doi.org/10.1145/3064176.3064193
https://doi.org/10.1145/3318464.3386136
https://www.usenix.org/conference/atc18/presentation/chan
https://cloud.google.com/persistent-disk
https://cloud.google.com/persistent-disk
https://cloud.google.com/storage/
https://www.usenix.org/conference/atc20/presentation/conway
https://www.usenix.org/conference/atc20/presentation/conway
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3183713.3196927
https://doi.org/10.1145/3299869.3319903
https://doi.org/10.14778/1920841.1921015
https://parquet.apache.org/
https://cortexmetrics.io/
https://flink.apache.org/
https://spark.apache.org/
https://prestodb.io/
https://doi.org/10.14778/3415478.3415552
https://grpc.io/
https://docs.influxdata.com/influxdb/
https://docs.influxdata.com/influxdb/
https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet
https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet
https://www.usenix.org/conference/atc18/presentation/kannan
https://www.usenix.org/conference/atc18/presentation/kannan
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://doi.org/10.1109/ICDE.2013.6544812
https://www.usenix.org/conference/atc19/presentation/li-yongkun
https://www.usenix.org/conference/atc19/presentation/li-yongkun
https://doi.org/10.1145/2043556.2043558
https://doi.org/10.1145/3033273
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/disks/
https://azure.microsoft.com/en-us/services/storage/disks/
https://github.com/oklog/ulid
https://github.com/oklog/ulid
https://doi.org/10.1007/s002360050048
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/2824032.2824078
https://github.com/thanos-io/thanos
https://github.com/thanos-io/thanos
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://prometheus.io/

[50] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. 2017.
PebblesDB: Building Key-Value Stores Using Fragmented Log-Structured Merge
Trees. In Proceedings of the 26th Symposium on Operating Systems Principles
(Shanghai, China) (SOSP ’17). Association for Computing Machinery, New York,
NY, USA, 497–514. https://doi.org/10.1145/3132747.3132765

[51] Jeff Dean Sanjay Ghemawat. 2021. LevelDB. https://github.com/google/leveldb.
[52] Russell Sears and Raghu Ramakrishnan. 2012. BLSM: A General Purpose Log

Structured Merge Tree. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data (Scottsdale, Arizona, USA) (SIGMOD ’12).
Association for Computing Machinery, New York, NY, USA, 217–228. https:
//doi.org/10.1145/2213836.2213862

[53] Michael Kerrisk Serge Hallyn. 2021. cgroups — Linux manual page. https:
//man7.org/linux/man-pages/man7/cgroups.7.html.

[54] Xuanhua Shi, Zezhao Feng, Kaixi Li, Yongluan Zhou, Hai Jin, Yan Jiang, Bingsheng
He, Zhijun Ling, and Xin Li. 2020. ByteSeries: An in-Memory Time Series
Database for Large-Scale Monitoring Systems. In Proceedings of the 11th ACM
Symposium on Cloud Computing (Virtual Event, USA) (SoCC ’20). Association
for Computing Machinery, New York, NY, USA, 60–73. https://doi.org/10.1145/
3419111.3421289

[55] Facebook Open Source. 2021. RocksDB - A persistent key-value store for fast storage
environments. https://rocksdb.org/.

[56] D. Teng, L. Guo, R. Lee, F. Chen, S. Ma, Y. Zhang, and X. Zhang. 2017. LSbM-tree:
Re-Enabling Buffer Caching in Data Management for Mixed Reads and Writes.
In 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). 68–79. https://doi.org/10.1109/ICDCS.2017.70

[57] Timescale. 2020. Time Series Benchmark Suite, a tool for comparing and evaluating
databases for time series data. https://github.com/timescale/tsbs.

[58] Inc. Timescale. 2020. Time-series data simplified | Timescale. https://www.
timescale.com/.

[59] Suryandaru Triandana. 2020. LevelDB key/value database in Go. https://github.
com/syndtr/goleveldb.

[60] Alexander Visheratin, Alexey Struckov, Semen Yufa, Alexey Muratov, Denis
Nasonov, Nikolay Butakov, Yury Kuznetsov, and Michael May. 2020. Peregreen –
modular database for efficient storage of historical time series in cloud environ-
ments. In 2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX
Association, 589–601. https://www.usenix.org/conference/atc20/presentation/
visheratin

[61] Zhiqi Wang, Jin Xue, and Zili Shao. 2021. Heracles: An Efficient Storage Model
and Data Flushing for Performance Monitoring Timeseries. Proc. VLDB Endow.
14, 6 (Feb. 2021), 1080–1092. https://doi.org/10.14778/3447689.3447710

[62] Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An Architecture for
Well-Conditioned, Scalable Internet Services. SIGOPS Oper. Syst. Rev. 35, 5 (Oct.
2001), 230–243. https://doi.org/10.1145/502059.502057

[63] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. 2015. LSM-trie: An LSM-tree-
based Ultra-Large Key-Value Store for Small Data Items. In 2015 USENIX Annual
Technical Conference (USENIX ATC 15). USENIX Association, Santa Clara, CA, 71–
82. https://www.usenix.org/conference/atc15/technical-session/presentation/
wu

[64] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: AHybrid Index Key-
Value Store for DRAM-NVM Memory Systems. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17). USENIX Association, Santa Clara, CA, 349–362.
https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia

[65] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost for NVM-based Single
Level Systems. In 13th USENIX Conference on File and Storage Technologies (FAST
15). USENIX Association, Santa Clara, CA, 167–181. https://www.usenix.org/
conference/fast15/technical-sessions/presentation/yang

[66] T. Yao, Jiguang Wan, P. Huang, Xubin He, Q. Gui, F. Wu, and C. Xie. 2017. A
Light-weight Compaction Tree to Reduce I / O Amplification toward Efficient
Key-Value Stores.

[67] Ting Yao, Jiguang Wan, Ping Huang, Yiwen Zhang, Zhiwen Liu, Changsheng
Xie, and Xubin He. 2019. GearDB: A GC-free Key-Value Store on HM-SMR
Drives with Gear Compaction. In 17th USENIX Conference on File and Storage
Technologies (FAST 19) (Boston, MA, USA) (FAST’19). USENIX Association, Boston,
MA, 159–171. https://www.usenix.org/conference/fast19/presentation/yao

[68] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu Tang, Hong Jiang, Chang-
sheng Xie, and Xubin He. 2020. MatrixKV: Reducing Write Stalls and Write
Amplification in LSM-tree Based KV Stores with Matrix Container in NVM. In
2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX Association,
17–31. https://www.usenix.org/conference/atc20/presentation/yao

[69] Hobin Yoon, Juncheng Yang, Sveinn Fannar Kristjansson, Steinn E. Sigurdarson,
Ymir Vigfusson, and Ada Gavrilovska. 2018. Mutant: Balancing Storage Cost and
Latency in LSM-Tree Data Stores. In Proceedings of the ACM Symposium on Cloud
Computing (Carlsbad, CA, USA) (SoCC ’18). Association for Computing Machin-
ery, New York, NY, USA, 162–173. https://doi.org/10.1145/3267809.3267846

[70] Naoki Yoshinaga. 2021. cedar - C++ implementation of efficiently-updatable double-
array trie. http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/cedar/.

[71] Yinliang Yue, Bingsheng He, Yuzhe Li, and Weiping Wang. 2017. Building an
Efficient Put-Intensive Key-Value Store with Skip-Tree. IEEE Trans. Parallel Distrib.
Syst. 28, 4 (April 2017), 961–973. https://doi.org/10.1109/TPDS.2016.2609912

[72] Q. Zhang, Y. Li, P. P. C. Lee, Y. Xu, Q. Cui, and L. Tang. 2020. UniKV: Toward
High-Performance and Scalable KV Storage in Mixed Workloads via Unified
Indexing. In 2020 IEEE 36th International Conference on Data Engineering (ICDE).
313–324. https://doi.org/10.1109/ICDE48307.2020.00034

[73] Jia Zou, Arun Iyengar, and Chris Jermaine. 2019. Pangea: monolithic distributed
storage for data analytics. Proceedings of the VLDB Endowment 12 (02 2019),
681–694. https://doi.org/10.14778/3311880.3311885

Session 20: Database Security and Distributed Data Management SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1432

https://doi.org/10.1145/3132747.3132765
https://github.com/google/leveldb
https://doi.org/10.1145/2213836.2213862
https://doi.org/10.1145/2213836.2213862
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://doi.org/10.1145/3419111.3421289
https://doi.org/10.1145/3419111.3421289
https://rocksdb.org/
https://doi.org/10.1109/ICDCS.2017.70
https://github.com/timescale/tsbs
https://www.timescale.com/
https://www.timescale.com/
https://github.com/syndtr/goleveldb
https://github.com/syndtr/goleveldb
https://www.usenix.org/conference/atc20/presentation/visheratin
https://www.usenix.org/conference/atc20/presentation/visheratin
https://doi.org/10.14778/3447689.3447710
https://doi.org/10.1145/502059.502057
https://www.usenix.org/conference/atc15/technical-session/presentation/wu
https://www.usenix.org/conference/atc15/technical-session/presentation/wu
https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia
https://www.usenix.org/conference/fast15/technical-sessions/presentation/yang
https://www.usenix.org/conference/fast15/technical-sessions/presentation/yang
https://www.usenix.org/conference/fast19/presentation/yao
https://www.usenix.org/conference/atc20/presentation/yao
https://doi.org/10.1145/3267809.3267846
http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/cedar/
https://doi.org/10.1109/TPDS.2016.2609912
https://doi.org/10.1109/ICDE48307.2020.00034
https://doi.org/10.14778/3311880.3311885

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Cloud Storage Exploration
	2.2 Timeseries Management System
	2.3 Log-Structured Merge-Tree
	2.4 Motivation

	3 Design
	3.1 Unified Data Model
	3.2 Memory Efficiency Exploration
	3.3 Elastic Time-Partitioned LSM-Tree
	3.4 TimeUnion Operations

	4 Evaluation
	4.1 Experiment Setup
	4.2 End-To-End Evaluation
	4.3 Storage Engine Evaluation

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

